Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna.
نویسندگان
چکیده
Coupling nanoscale emitters via optical antennas enables comprehensive control of photon emission in terms of intensity, directivity and polarization. In this work we report highly directional emission of circularly polarized photons from quantum dots coupled to a spiral optical antenna. The structural chirality of the spiral antenna imprints spin state to the emitted photons. Experimental results reveal that a circular polarization extinction ratio of 10 is obtainable. Furthermore, increasing the number of turns of the spiral gives rise to higher antenna gain and directivity, leading to higher field intensity and narrower angular width of emission pattern in the far field. For a five-turn Archimedes' spiral antenna, field intensity increase up to 70-fold simultaneously with antenna directivity of 11.7 dB has been measured in the experiment. The highly directional circularly polarized photon emission from such optically coupled spiral antenna may find important applications in single molecule sensing, quantum optics information processing and integrated photonic circuits as a nanoscale spin photon source.
منابع مشابه
Demonstration of beam steering via dipole-coupled plasmonic spiral antenna
Optical antennas have been utilized to tailor the emission properties of nanoscale emitters in terms of the intensity, directivity and polarization. In this letter, we further explore the capability of beam steering via the use a spiral plasmonic structure as a transmitting antenna. According to both numerical simulation and experimental observations, the beaming direction can be steered throug...
متن کاملCircularly Polarized Circular Slot Antenna Array Using Sequentially Rotated Feed Network
This paper presents the design, simulation, and measurement of two low-cost broadband circularly polarized (CP) printed antennas: a single element and an array at C band. The proposed single element antenna is excited by an L-shaped strip with a tapered end, located along the circular-slot diagonal line in the back plane. From the array experimental results, the 3 dB axial ratio bandwidth can r...
متن کاملEfficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas
Infrared (IR) light sources with high modulation rates are critical components for on-chip optical communications. Lead-based colloidal quantum dots are promising nonepitaxial materials for use in IR light-emitting diodes, but their slow photoluminescence lifetime is a serious limitation. Here we demonstrate coupling of PbS quantum dots to colloidal plasmonic nanoantennas based on film-coupled ...
متن کاملDesign and Development of High Gain, Low Profile and Circularly Polarized Cavity-backed Slot Antennas Using High-order Modes of Square Shaped Substrtae Integrated Waveguide Resonator
In In this paper, two low profile, single fed cavity backed slot antennas providing a circularly polarized (CP) wave are introduced. One of the antennas presents a right-handed CP (RHCP) wave, while the other one offers a left handed CP (LHCP) wave. The proposed antennas consist of a square shaped Substrtae Integrated Waveguide (SIW) cavity incorporatng two couples of radiating slots to radiate...
متن کاملObtaining Circularly Polarized Optical Spots beyond the Diffraction Limit Using Plasmonic Nano-Antennas
With advances in nanotechnology, emerging plasmonic nano-optical applications, such as all-optical magnetic recording, require circularly-polarized electromagnetic radiation beyond the diffraction limit. In this study, a plasmonic cross-dipole nano-antenna is investigated to obtain a circularly polarized near-field optical spot with a size smaller than the diffraction limit of light. The perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 20 17 شماره
صفحات -
تاریخ انتشار 2012